Projective Splitting Methods for Pairs of Monotone Operators
نویسندگان
چکیده
By embedding the notion of splitting within a general separator projection algorithmic framework, we develop a new class of splitting algorithms for the sum of two general maximal monotone operators in Hilbert space. Our algorithms are essentially standard projection methods, using splitting decomposition to construct separators. These projective algorithms converge under more general conditions than prior splitting methods, allowing the proximal parameter to vary from iteration to iteration, and even from operator to operator, while retaining convergence for essentially arbitrary pairs of operators. The new projective splitting class also contains noteworthy preexisting methods either as conventional special cases or excluded boundary cases.
منابع مشابه
Projective Splitting with Forward Steps: Asynchronous and Block-Iterative Operator Splitting
This work is concerned with the classical problem of finding a zero of a sum of maximal monotone operators. For the projective splitting framework recently proposed by Combettes and Eckstein, we show how to replace the fundamental subproblem calculation using a backward step with one based on two forward steps. The resulting algorithms have the same kind of coordination procedure and can be imp...
متن کاملA Note on the Paper by Eckstein and Svaiter on "General Projective Splitting Methods for Sums of Maximal Monotone Operators"
We describe a general projective framework for finding a zero of the sum of n maximal monotone operators over a real Hilbert space. Unlike prior methods for this problem, we neither assume n = 2 nor first reduce the problem to the case n = 2. Our analysis defines a closed convex extended solution set for which we can construct a separating hyperplane by individually evaluating the resolvent of ...
متن کاملAsynchronous block-iterative primal-dual decomposition methods for monotone inclusions
We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in established methods. Determinist...
متن کامل2 7 N ov 2 01 5 Asynchronous Block - Iterative Primal - Dual Decomposition Methods for Monotone Inclusions ∗
We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in established methods. Determinist...
متن کاملGeneral Projective Splitting Methods for Sums of Maximal Monotone Operators
We describe a general projective framework for finding a zero of the sum of n maximal monotone operators over a real Hilbert space. Unlike prior methods for this problem, we neither assume n = 2 nor first reduce the problem to the case n = 2. Our analysis defines a closed convex extended solution set for which we can construct a separating hyperplane by individually evaluating the resolvent of ...
متن کامل